全國服務谘詢熱線:

13395745986

當前位置:首頁  >  技術文章  >  應用案例 | 使用量子級聯激光光譜儀(yi) 測量近6.2微米處NO2 的譜線強度

應用案例 | 使用量子級聯激光光譜儀測量近6.2微米處NO2 的譜線強度

更新日期:2024-01-02      點擊次數:1048

Recently, a collaborative research team from Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education and Laser Spectroscopy and Sensing Laboratory, Anhui University, and HealthyPhoton Technology Co., Ltd. published a research paper titled Measurements of line strengths for NO2 near 6.2 μm using a quantum cascade laser spectrometer.

近日,來自安徽大學光電信息獲取與(yu) 處理教育部重點實驗室、安徽大學激光光譜與(yu) 傳(chuan) 感實驗室米兰app下载苹果手机安装的聯合研究團隊發表了一篇題為(wei) Measurements of line strengths for NO2 near 6.2 μm using a quantum cascade laser spectrometer的研究論文。

Research Background研究背景

Nitrogen dioxide (NO2) is a common pollutant that comes primarily from the emissions of burning fossil fuels, natural lightning, and microbial processes in soil. Atmospheric NO2 contributes to the formation of ground-level ozone. It can cause photochemical smog and lead to increased acidity of rain. Continuous exposure to high NO2 concentration may result in a wide variety of short- and long-term adverse health effects on the respiratory system of humans and animals. Therefore, developing a cost-effective and robust sensor system for NO2 monitoring is crucial.

二氧化氮是一種常見的汙染物,主要來自化石燃料燃燒排放、自然雷電以及土壤中的微生物過程。大氣中的NO2有助於(yu) 地麵臭氧的形成,可能導致光化學煙霧,並導致雨水酸度增加。持續暴露於(yu) 高濃度的NO2可能對人類和動物的呼吸係統產(chan) 生各種短期和長期的不良健康影響。因此,開發一種成本效益高、穩健的NO2監測傳(chuan) 感器係統至關(guan) 重要。

Many technical solutions have been developed for NO2 detection. The chemiluminescence and wet chemical analysis are commonly used for NO2 detection. However, these methods have a slow response time and suffer from low selectivity in discriminating between NO and NO2, which limit their application. Optical methods based on absorption spectroscopy provide powerful access for trace gas analysis with extremely high sensitivity, selectivity, and fast response. Laser-based absorption spectroscopy techniques in mid-IR molecular fingerprint region are ideal for trace gas analysis because most atmospheric species have strong fundamental vibrational transitions in this spectral region, which allows highly sensitive and selective detection of trace gases. The commercial available continuous-wave (CW) quantum cascade lasers (QCLs) in the mid-IR spectral region have been widely used for developing spectroscopic techniques for quantitative analysis of NO2.

已經開發了許多技術解決(jue) 方案用於(yu) NO2檢測。化學發光和濕化學分析通常用於(yu) NO2檢測。然而,這些方法響應時間較慢,且在區分NONO2時選擇性較低,限製了它們(men) 的應用。基於(yu) 吸收光譜學的光學方法具有高度的靈敏度、選擇性和快速響應,為(wei) 痕量氣體(ti) 分析提供了強大的手段。基於(yu) 中紅外分子指紋區的激光吸收光譜技術對於(yu) 痕量氣體(ti) 分析非常理想,因為(wei) 大多數大氣成分在該光譜區域具有強烈的基本振動躍遷,從(cong) 而實現對痕量氣體(ti) 的高靈敏度和選擇性檢測。商業(ye) 上可用的中紅外光譜區的連續波(CW)量子級聯激光器(QCLs)已廣泛用於(yu) 發展NO2 的定量分析的光譜技術。

Experimental setup實驗設置

In this work, a mid-IR CW-QCL-based laser absorption spectrometer is constructed in our laboratory to revise the spectral region from 1629 cm1 to 1632 cm1. The schematic of the CW-QCL-based spectroscopic setup used to investigate the NO2 absorption spectroscopy line parameters is shown in Fig. 1.

在這項工作中,我們(men) 在實驗室中構建了一台基於(yu) 中紅外CW-QCL的激光吸收光譜儀(yi) ,以修訂波數從(cong) 1629 cm1 1632 cm1的光譜區域。1顯示了用於(yu) 研究NO2 吸收光譜線參數的基於(yu) 中紅外CW-QCL的光譜設置的示意圖。

FIG.1.png

Fig. 1. Experimental setup of the CW-QCL based laser spectrometer.

米兰app下载苹果手机安装為(wei) 此項目提供了激光發射器(QC-qubeTM)與(yu) 驅動器(QC750-TouchTM)。一個(ge) CW室溫QCL芯片被封裝在一個(ge) 熱電(TE)製冷的光束整形包裝中,由一個(ge) 集成的溫度和低噪聲電流控製器驅動。

QC-Qube™.jpg

QC-qubeTM

QC750-TouchTM

A CW RT QCL chip is packaged in a thermoelectrically (TE) cooled beam collimation package (Q-qubeTM, HealthyPhoton Co., Ltd.), which is driven by an integrated temperature and low noise current controller (QC750-TouchTM, HealthyPhoton Co., Ltd.). The laser source is operating in the wavelength region from 1629 cm−1 to 1632 cm−1 without mode hops and has an average output power of 30 mW. The laser frequency is scanned across absorption lines using a triangular wave at a typical frequency of 100 Hz. The linewidth of the laser is approximately<10 MHz, and thus the broadening induced by the laser line profile can be neglected. The laser beam is initially collimated and sent through a sample cell with an optical path length of 29.6 cm. A wedged CaF2 window placed at the Brewster angle is used to avoid residual etalon fringes. The QCL output beam is combined with a visible red light (632.8 nm) by a ZnSe beam splitter to facilitate the optical alignments of the QCL output beam. The main beam that transmits through the sample cell is focused by a convex lenses into a TE-cooled, high-speed IR photovoltaic detector (PVI-4TE-6, Vigo, Poland) that can operate at RT. Therefore, the detector does not require liquid nitrogen cooling, simplifies the routine use of the system, and allows for longterm automated operation. Data are subsequently acquired using a data acquisition board card (National Instruments, USB 6259). The other part of the beam is coupled into an etalon, which is constructed with two ZnSe mirrors and has a free spectral range of 0.0163 cm−1.

激光源在1629 cm11632 cm1的波長範圍內(nei) 工作,沒有模式跳變,並且平均輸出功率為(wei) 30 mW。激光頻率通過三角波在典型頻率100 Hz下進行掃描。激光的線寬約為(wei) <10 MHz,因此可以忽略激光線型引起的展寬。激光束最初被準直,並通過一個(ge) 光程為(wei) 29.6 cm的樣品池。在Brewster角度放置的楔形CaF2窗口用於(yu) 避免殘留的Etalon條紋。QCL輸出光束與(yu) 可見紅光(632.8 nm)通過ZnSe分束鏡相結合,以便於(yu) 對準QCL輸出光束的光學調整。透過樣品池的主光束通過凸透鏡聚焦到一個(ge) TE製冷的高速紅外光伏探測器,該探測器可以在室溫下操作。因此,探測器不需要液氮製冷,簡化了係統的常規使用,並允許長期自動化操作。數據隨後使用數據采集板卡進行獲取。光束的另一部分被耦合到一個(ge) Etalon中,該Etalon由兩(liang) 個(ge) ZnSe鏡構成,自由光譜範圍為(wei) 0.0163 cm1

FIG.2.png

Fig. 2. DFB-QCL tuning features at different operating temperatures and operating currents.

Conclusion結論

In this study, a compact spectroscopic sensor based on a TE cooled RT CW-QCL was developed for trace NO2 detection. The spectra of NO2 and N2 mixtures with high resolution were detailedly investigated at RT (~296 K) and in the pressure range of 0–90 mbar. Absorption spectra were fitted with a standard Voigt profile. Accurate measurements of line intensities and N2 pressureinduced broadening coefficients for 43 lines of NO2 around 6.2 μm were performed. This spectral region is highly suitable for high sensitive detection of NO2 concentration. Our results agree well with those given in the latest HITRAN16 database in terms of line strength. The experimentally spectroscopic parameters will be useful for upgrading our newly developed NO2 gas sensor system for atmospheric trace gas monitoring and industrial process control. In addition, we hope that the results will be valuable to the spectroscopic databases of NO2 molecule.

本研究中,我們(men) 開發了一款基於(yu) 熱電製冷的室溫連續波量子級聯激光器(RT CW-QCL)的緊湊型光譜傳(chuan) 感器,用於(yu) 痕量NO2的檢測。在室溫(~296 K)和0-90毫巴的壓力範圍內(nei) ,詳細研究了NO2N2混合物的高分辨率光譜。吸收光譜采用標準Voigt輪廓進行擬合。對於(yu) 約6.2微米附近的43NO2譜線,進行了線強度和N2壓力誘導展寬係數的準確測量。這個(ge) 光譜區域非常適合於(yu) 對NO2濃度進行高靈敏度檢測。我們(men) 的結果在譜線強度方麵與(yu) 最新的HITRAN16數據庫相當一致。實驗性的光譜參數將有助於(yu) 升級我們(men) 新開發的用於(yu) 大氣痕量氣體(ti) 監測和工業(ye) 過程控製的NO2氣體(ti) 傳(chuan) 感器係統。此外,我們(men) 希望這些結果對於(yu) NO2分子的光譜數據庫具有重要價(jia) 值。

reference參考來源:

Measurements of line strengths for NO2 near 6.2 μm using a quantum cascade laser spectrometer, Journal of Quantitative Spectroscopy & Radiative Transfer 250 (2020) 107047



全國統一服務電話

0574-88357326

電子郵箱:info@healthyphoton.com

公司地址:浙江省寧波市鄞州區潘火街道金源路中創科技園1號樓305室

微信公眾(zhong) 號